Notation of Z transforms

In general, Z transforms are rational polynomials, and there are 4 ways to write them.

	Polynomial in z ⁻¹	Polynomial in z
Unfactored	for example $ \underbrace{6} $ $ \underbrace{1} + 3z^{-1} + 2z^{-2} $	for example e.g. $z^2 \frac{6}{z^2 + 3z + 2}$
	in general	in general $z^{(N-M)} \frac{p_0 z^M + p_1 z^{M-1} + \dots + p_M}{d_0 z^N + d_1 z^{N-1} + \dots + d_N}$
	The correct form requires a circled coefficient not be multiplied by a power of z.	The correct form requires a circled coefficient not be multiplied by a power of z.
	Left-most denominator coefficient is 1.	Left-most denominator power of z coeff = 1 .
Factored	for example $6\frac{1}{\mathbb{O}+2z^{-1})\mathbb{O}+z^{-1}}$	for example $6z^2 \frac{1}{(\mathbb{Z}+2)(\mathbb{Z}+1)}$
	in general $\prod_{i=1}^{M} \bigcap_{j=1}^{M} \mathcal{E}_{j} z_{j}^{-1}$	in general $\prod_{i=1}^{M} (G_i \in \mathcal{F}_i)$
	$\frac{p_0}{d_0} \cdot \frac{\prod_{k=1}^{m} \mathbb{O} - \xi_k z^{-1})}{\prod_{k=1}^{N} \mathbb{O} - \lambda_k z^{-1})}$	$rac{P_0}{d_0} z^{N-M} \cdot rac{\displaystyle\prod_{k=1}^M \left(\mathbb{Z} - oldsymbol{\xi}_k ight)}{\displaystyle\prod_{k=1}^N \left(\mathbb{Z} - oldsymbol{\lambda}_k ight)}$
	The correct form requires a circled numbers to be exactly 1.	The correct form requires a circled variable to be exactly z with coefficient of 1.

Notes:

- All the following use the same example, written in different ways.
- The general examples all have a numerator order of M and a denominator order of N (if they represent systems we could say they represent IIR systems of order N, or for N=0, FIR systems of order M)
- For the factored cases
 - \circ ξ are the zeros of X(z) (roots when setting the numerator = 0)
 - o λ are the poles of X(z) (roots when setting the denominator = 0)
 - o additional (N-M) zeros at z=0 if N>M
 - o additional (M-N) poles at z=0 if M>N