Read 4.3 (4.4.1-4.4.3)

HW PS #20

Admin

Obj Transfer functions

- Review
- Geometric interpretation
- BIBO stability

Transfer Function $H(e^{jw})$

1. How to find given:

h[n]

DE

Block diagram

Filter specs

2. Forms

	z^{-1}	Z
Polynomial	$2^{(1)} \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} \alpha_k z^{-k}} = 9$	$Z^{()} = \sum_{k=0}^{\infty} C_k z^k $ eg — — — — — — — — — — — — — — — — — —
Factored	$kz^{(1)} = \sum_{k=1}^{M} (1-\xi_k z^{-1})$ $T = \sum_{k=1}^{N} (1-\lambda_k z^{-1})$	Kz() K=1 eg ———————————————————————————————————

3. Poles λ_k , zeros ξ_k

 $\lambda_k \xi_k$ may be complex

To plot:_____

4. Frequency Response from H(z)

Geometric Interpretation of $|H(e^{j\omega})|$

Derivation. E.g.
$$H(z) = \frac{(z+j)(z-j)}{(z+1/2)(z-1/2)}$$

$$|H(e^{jw})| =$$

Note: • Symmetry around horizontal axis

• What $\omega = 0$, π geometrically means (low/high freq)

• What a zero on unit circle does to frequency response

• What a pole on unit circle does to frequency response

Demo

BIBO Stability

- $\bullet \quad \sum_{n=-\infty}^{\infty} |h[n]| < \infty$
- ROC includes unit circle

Demo