Simple M=2 FIR filter design method

Not the best, but works and is easy.

- Task: Design a LP or HP that passes freq W_p stops freq W_s
- Assume h[n] is FIR, M=2, ie h[n] = [a b a]

 (depending on a, b the filter can be hp or lp)
- To find a, b: $\begin{bmatrix} 2\cos Wp & 1 \\ 2\cos Ws & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Theory (useful!)

•
$$H(e^{jw}) = h[0] + h[1]e^{-j\omega} + h[2]e^{-j2\omega} + \cdots$$

for given h[n]
 $= a + be^{-j\omega} + ae^{-j2\omega}$
 $= e^{-j\omega} [ae^{j\omega} + ae^{-j\omega} + b]$
 $= e^{-jw} [2a\cos\omega + b]$
• $|H(e^{jw})| = |e^{-j\omega}| |2a\cos\omega + b| = 2a\cos\omega + b$

- At pass freq W_p: desire $|H(e^{j\omega})| = 1 => 2a \omega_s W_p + b = 1$
- At stop freq W_s: desire $|H(e^{j\omega})| = 0 => 2a \omega_s W_s + b = 0$
- So $\begin{bmatrix} 2\cos W_p & 1 \\ 2\cos W_s & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$