Common Z Transform Pairs

x[n]	X(z)	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	$ \mathbf{z} > 1$
a ⁿ u[n]	$\frac{1}{1-a z^{-1}}$	z > a
(n+1) a ⁿ u[n]	$\frac{1}{(1-a z^{-1})^2}$	z < a
$a^n\cos(\omega_o n)\;u[n]$	$\frac{1 - (a\cos\omega_{o})z^{-1}}{1 - (2a\cos\omega_{o})z^{-1} + a^{2}z^{-2}}$	z > a
$a^n \sin(\omega_o n) u[n]$	$\frac{(a\sin\omega_{o})z^{-1}}{1 - (2a\cos\omega_{o})z^{-1} + a^{2}z^{-2}}$	$ \mathbf{z} > a$

Common example: any finite length x[n] can be broken into sums of scaled, time-shifted $\delta[n-n_o]$, so its Z transform will be sums of similarly scaled z^{-no} (see time-shift property below), with a ROC everywhere except possibly z=0 or $z=\infty$ (evaluate z at these points to see)

Z Transform Properties

Z Transform Troperties			-
Property name	x[n], h[n]	X(z), H(z)	$ROC: R_x, R_h$
Linearity	a x[n] + b h[n]	a X(z) + b H(z)	Intersection of R _x , R _h
Time-shifting	x[n-3]	$z^{-3} X(z)$	R_x except possibly z=0 or ∞ (evaluate z at these points to see)
Differentiation of $X(z)$	n x[n]	$-z\frac{\mathrm{d}X(z)}{\mathrm{d}z}$	R_x except possibly z=0 or ∞
Convolution	x[n] * h[n]	X(z) H(z)	Intersection of R _x , R _h