- 1. Consider the following finite-length sequences with N=8 defined for $0 \le n \le 7$:
 - $x_1[n] = [1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1]$
 - $x_2[n] = [1 \ 1 \ 0 \ 0 \ 0 \ 0 \ -1 \ -1]$
 - $x_3[n] = [0 \ 1 \ 1 \ 0 \ 0 \ 0 \ -1 \ -1]$
 - $x_4[n] = [0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1]$
- Without explicitly calculating DFTs:
- a. Which have purely real DFTs (i.e. which are purely pcs?)
- b. Which have purely imaginary DFTs (i.e. which are purely pca)?
- c. Which have X[k=0] = 0? (Hint: last PS asked what is X[k=0])

a)
$$X_1, X_4$$
 are pcs \Rightarrow real DFT. Why? X_1 : (1 | 1000 | 11 | 11 | 000 | 11 (11.))

replicate etc. \Rightarrow replicate

b) X_2 is pca \Rightarrow imag DFT. Why? X_3 : (0 | 1000 | 1-1) 0 | 1000 | 1-1 (0 | 10...)

c) X_2, X_3 have $X[k=0] = \sum_{n=0}^{N-1} \times [n] = 0$

2. Graphically find this circular convolution: $[6\ 2\ 4] \circledast_3 [1\ 1\ 1]$ if both sequences are finite length starting at n=0.

starting at n=0.

$$x[k]$$
 $b^{2} = 0^{4}$
 $h[-k]$
 $h[-k]$
 $h[-k]$
 $h[-k] = 0^{2} = 0^{4}$
 $h[-k] = 0^{4}$

3. If $x[n] \circledast_5 h[n] = \begin{bmatrix} 8 & 2 & 9^2 & 10 \\ 8 & 2 & 9^2 & 10 \end{bmatrix}$ (and the answer starts at n=0 as usual), can you find $x[n] \circledast_4 h[n]$? If so, what is it?

No; you cannot tell. (To see why, let the linear convolution be $[x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8]$, and compare the 5 and 4 length time-aliased sequences).

4. To find the **linear** convolution of $x[n] = [1 \ 2 \ 3]$ with $h[n] = [1 \ 1 \ 1 \ 1 \ 1]$ using DFTs, how many zeros must you end-pad x and h by? i.e. in Matlab, how many zeros would you have to end-pad x and h by before evaluating sifft(fft(x)).* fft(h)

Linear convolution has length $N_x + N_h - 1 = 3 + 5 - 1 = 7$ so pad each input to length 7. $x = \begin{bmatrix} 1 & 2 & 3 & 0 & 0 & 0 \end{bmatrix}$, $h = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$

5. If you are only interested in graphing the energy density of a signal (i.e. $|X[k]|^2$) does it make a difference if you zero pad the beginning or the end of the signal? Why?

No. Zero padding by n_o at the beginning of the signal introduces a time shift, multiplying the non-padded signal by $e^{-j2\pi n_o k/N}$ which has a magnitude of 1, therefore zero padding at the beginning does not change |X[k]|, only $\angle X[k]$.