1. Find the DTFT of

a)
$$x[n] = 6\delta[n] - 2\delta[n-2] + \delta[n+1]$$

b)
$$y[n] = 8e^{-j\frac{\pi}{2}n}$$

c)
$$z[n] = (2)^{-n}u[n-1]$$

2. Find the IDTFT of

Hints

a)
$$\sum_{k=-\infty}^{\infty} \delta(\omega + 2\pi k)$$

A long train of impulses. Check your transform table

b)
$$\frac{1-e^{-j\omega(N+1)}}{1-e^{-j\omega}}$$

- 1) using method discussed in class, find $y = \sum_{n=0}^{N} e^{-j\omega n}$
- c) $1 + 4\cos^2(\omega)$

2) compare with the mathematical definition of the DTFT Use Euler Identity to put in form of complex exponentials

a)
$$x[n] = \begin{cases} |n|, & -N \le n \le N \\ 0, & \text{otherwise} \end{cases}$$

3. Is $X(e^{j\omega})$ purely real, purely imaginary, or complex if

b)
$$x[n] = \begin{cases} n^3, & -N \le n \le N \\ 0, & \text{otherwise} \end{cases}$$

c)
$$x[n] = \frac{\sin(\frac{\pi}{3}n)}{\pi n}$$