Given: continuous-time signal $x(t) = 36 \cos(12 t)$

1. What is the minimum sampling frequency to allow perfect restoration of the signal?

First, determine the maximum continuous time (CT) frequency in the signal. This is $\cos(\Omega t)$ in general, so for this signal the maximum (and only) frequency in the signal is:

$$\Omega = 12 \text{ rads/sec}$$

Recall the relationship between continuous time (CT) frequency in rads/sec Ω and CT frequency in Hz f is:

$$\Omega = 2 \pi f$$

so the maximum frequency in the signal in Hz is:

$$f_{max} = 12/(2\pi) \text{ Hz} = 10/\pi \text{ Hz}$$

This means that in every second there will be $10/\pi$ complete periods of the CT signal.

The Sampling Theorem says to avoid aliasing the sampling frequency f_s must be twice the highest frequency in the signal, so

$$f_s = 2 \text{ (max freq in signal)} = 12/\pi \text{ Hz}$$

2. What is the discrete frequency of x[n] if it is sampled from x(t) at $f_s = 24/\pi$ samples/second?

$$f_s = 24/\pi \text{ samples/sec} \rightarrow T_s = \pi / 24 \text{ sec/sample}$$

$$x[n] = x(t = n T_s) = 36 \cos[12 (n T_s)] = 36 \cos[\frac{\pi}{2}n]$$

$$\omega = \frac{\pi}{2} \text{ samples/rad}$$

$$\omega = \frac{\pi}{2}$$
 samples/rad

3. What is the discrete frequency of x[n] if it is sampled from x(t) at $f_s = 120/\pi$ samples/second?

$$f_s = 120/\pi \text{ samples/sec} \rightarrow T_s = \pi / 120 \text{ sec/sample}$$

$$x[n] = x(t = n T_s) = 36 \cos[12 n T_s] = 36 \cos[\frac{\pi}{10}n]$$

$$\omega = \frac{\pi}{10} \text{ samples/rad}$$

$$\omega = \frac{\pi}{10}$$
 samples/rad

(note: same continuous time frequency, different discrete time frequency)

4. What is the discrete frequency of x[n] if it is sampled from x(t) at $f_s = 6/\pi$ samples/second?

```
f_s = 6/\pi \text{ samples/sec} \rightarrow T_s = \pi / 6 \text{ sec/sample}

x[n] = x(t = n T_s) = 36 \cos[12 n T_s] = 36\cos[2\pi n]

can subtract or add multiples of 2\pi without affecting discrete frequency so x[n] = 36\cos(0 n) = 36 (i.e. x[n] = [\dots 36 36 36 36 36 \dots])
```

 $\omega = 0$ samples/rad

(note: aliasing has occurred and it now looks like a DC unchanging signal of 36)