1. Given continuous time signal $x(t) = 2\cos(6t)$ sampled at a sampling frequency of f_s , evaluate to a number the discrete time signal x[n] for n=0, 1, 2 if:

a.
$$f_s = \frac{2}{\pi} \text{Hz}$$

$$T_s = 1/f_s = \pi / 2 \text{ sec}$$

$$x[n] = x(t = n T_s) = x(\pi n / 2) = 2\cos(6\pi n / 2) = 2\cos(3\pi n)$$

$$x[0] = 2\cos(0 \pi) = x[0] = 2$$

$$x[1] = 2\cos(3\pi) = 2\cos(\pi) = x[1] = -2$$
 (since adding or subtracting 2π changes nothing) $x[2] = 2\cos(6\pi) = 2\cos(0) = x[2] = 2$

$$x[2] = 2\cos(6\pi) = 2\cos(0) = x[2] = 2$$

b.
$$f_s = \frac{1}{2\pi} \text{Hz}$$

$$T_s = 1/f_s = 2\pi \text{ sec}$$

$$x[n] = x(t = n T_s) = x(2\pi n) = 2\cos(12\pi n) = 2\cos(0) = 2$$

since can add or subtract 2π multiples

$$x[0] = 2$$

$$x[1] = 1$$

$$x[2] = 2$$

2. Given discrete time signal $x[n] = \begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}$ and the system below,

find y[n] for n=0, 1, 2, and 3.

for n<0, x[n] is always 0 so y[n] and the output of z^{-1} (i.e. y[n-1]) is also 0.

for each $n \ge 0$, evaluate x[n] first, then the output of z^{-1} (which is y[n-1]), then add to find y[n], so

n=0:
$$x[n] = 1$$
. The output of $z^{-1} = y[-1] = 0$ from above. The sum = 1+0 = $y[0] = 1$

n=1:
$$x[n] = 1$$
. The output of $z^{-1} = y[0] = 1$ from above. The sum = 1+1 = $y[1] = 2$

n=2:
$$x[n] = 1$$
. The output of $z^{-1} = y[1] = 2$ from above. The sum = 1+2 = $y[2] = 3$

n=3:
$$x[n] = 1$$
. The output of $z^{-1} = y[2] = 3$ from above. The sum = 1+3 = $y[3] = 4$