EE230 Test 2 – Frequency Response and Fourier Series Topics

Fre	equency Response
•	Transfer function $H(\omega)$
	— Given circuit, find H(ω) HW: Problem 11:1, 17:3
	 Given SSS input x(t) and H(ω), find y(t)
•	Bode Plots
	 Convert between linear gain and dB
	 Convert between H(ω) and magnitude Bode plot
•	Filter Design
	 Given real-world problem, choose filter type (Bessel, Butterworth, etc.) Lab
	Given real-world problem, choose filter orderLab
	Given real-world problem and AFD, design filterLab
Fo	urier Series
•	Given equation or sketch of periodic $f(t)$, identify T, f, ω
•	Given sketch or equation of periodic $f(t)$, find Fourier Series coefficients
	- a ₀ , a _n , b _n
	- A ₀ , A _n , φ _n
	- c _n
•	Given Fourier Series coefficients, find f(t)
•	Convert among different Fourier Series coefficients 15:3, 16:3, 17:1,2, 19:1
*	Given a circuit and periodic input x(t), find y(t) using Fourier Series 17:5,6
•	Signal power, given both $v(t)$ and $i(t)$ or single periodic signal $f(t)$
	Find the power at a specific frequency, including DC
	Find the total average power

Notes

- There will be four questions, evenly balanced from the above main two topics. Hint: one will be the subtopic with a starred instead of a circular bullet.
- The attached Useful Equations for Fourier Series will be on the last page of the test.
- You may bring a
 - hand calculator
 - o a 3x5 card, both sides, of your notes. No restrictions on content as long as it is not copied from another student
 - o clean FE handbook that you personally own

Useful Equations for Fourier Series Problems

Integrals

$$\int \cos(\omega t)dt = \frac{1}{\omega}\sin(\omega t)$$

$$\int \sin(\omega t)dt = -\frac{1}{\omega}\cos(\omega t)$$

$$\int t \cos(\omega t) dt = \frac{1}{\omega^2} \cos(\omega t) + \frac{t}{\omega} \sin(\omega t)$$

$$\int t \sin(\omega t) dt = \frac{1}{\omega^2} \sin(\omega t) - \frac{t}{\omega} \cos(\omega t)$$

Your Own

Trig Products -

$$\sin(a)\cos(b) = \frac{1}{2}[\sin(a+b) + \sin(a-b)]$$

$$\cos(a)\cos(b) = \frac{1}{2}[\cos(a+b) + \cos(a-b)]$$

$$\sin(a)\sin(b) = \frac{1}{2}[\cos(a-b) - \cos(a+b)]$$

Euler's Identities

$$\cos(\omega) = \frac{1}{2} [e^{j\omega} + e^{-j\omega}]$$

$$\sin(\omega) = \frac{1}{j2} [e^{j\omega} - e^{-j\omega}]$$

$$e^{j\omega} = \cos(\omega) + j\sin(\omega)$$

Fourier Series

given f(t) periodic in T so $\omega_0 = 2\pi/T$

$$f(t) = a_o + \sum_{n=1}^{\infty} a_n \cos(n\omega_o t) + b_n \sin(n\omega_o t) = A_o + \sum_{n=1}^{\infty} A_n \cos(n\omega_o t + \phi_n) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_o t}$$

coefficient formulae

$$a_o = \frac{1}{T} \int_{\langle T \rangle} f(t)dt, \quad a_n = \frac{2}{T} \int_{\langle T \rangle} f(t) \cos(n\omega_o t)dt, \quad b_n = \frac{2}{T} \int_{\langle T \rangle} f(t) \sin(n\omega_o t)dt$$

coefficient relationships

$$A_o = a_o = c_o, \qquad A_n \angle \phi_n = a_n - jb_n = 2c_n$$

Your Own