Questions

- 1. Laplace Transform
 - Forward and inverse
 - Using integral definition and tables/properties
- 2. Circuits and Laplace Transforms
 - With/without initial conditions
 - Convert among forms H(s), h(t), differential equations, pole/zeros, Bode Plot
- 3. Filter Design
 - Real-world problem into specifications (e.g. 4th order Butterworth LP, cutoff 12Hz)
- 4. Bode Plots
 - With and without poles and/or zeros at the origin
 - Magnitude aka Amplitude aka Gain
 - H(s) to Bode Plot and Bode Plot to H(s)
- 5. Fourier Series decomposition of a periodic function
 - cos/sin
 - cos/φ (i.e. Spectral Magnitude, or Spectral Phase plots)
 - complex exponential
- 6. Fourier Transform of a function
 - Forward and inverse
 - Using integral definition and tables/properties

Notes

- Nervous? You should be a little before a major exam! Overcome nervousness with adequate preparation so you can walk in confidently.
- Study by solving problems that cover the questions.
 - The above questions are specific and cover the skills you need for DSP, Controls, and Communications next year.
 - Look at Tests 1,2 to find areas of weakness and solve problems from
 - Textbook examples and solved problems
 - Old homeworks
 - Collaborative problems
 - Worked problems in the extra textbooks I have left in class
- To limit the length of the exam, only 5 of the 6 questions above will appear.
- I will provide the three attached equation sheets you have previously seen for
 - Laplace Transforms
 - Fourier Series
 - Fourier Transforms
- You may bring a
 - a hand calculator,
 - o three 3x5 cards, both sides, of your notes. No restrictions as long as not copied.
 - A clean FE handbook that you personally own.

Laplace Transforms

Transform Pairs

	f(t)	F(s)
Unit impulse	$\delta(t)$	1
Unit step	u(t)	$\frac{1}{s}$
Unit ramp	t u(t)	$\frac{1}{s^2}$
n th integral of an impulse	$\int \cdots \int \delta(t)$	$\frac{1}{s^n}$
Power of t	$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$
Derivative of an impulse	$\delta'(t)$	S
n th derivative of an impulse	$\delta^{(n)}(t)$	s ⁿ
Exponential	$e^{-at} u(t)$	$\frac{1}{s+a}$
t times exponential	$te^{-at} u(t)$	$\frac{1}{(s+a)^2}$
t ⁿ times exponential	$\frac{1}{(n-1)!}t^{n-1}e^{-at}$	$\frac{1}{(s+a)^n}$
Sine	$\sin(\omega t)u(t)$	$\frac{\omega}{s^2 + \omega^2}$
Cosine	$\cos(\omega t)u(t)$	$\frac{s}{s^2 + \omega^2}$
Damped sine	$e^{-at}\sin(\omega t)u(t)$	$\frac{\omega}{(s+a)^2+\omega^2}$
Damped cosine	$e^{-at}\cos(\omega t)u(t)$	$\frac{s+a}{(s+a)^2+\omega^2}$

Transform Properties

Transform Troperties		
	f(t)	F(s)
Linearity	$c_1 f_1(t) + c_2 f_2(t)$	$c_1 F_1(s) + c_2 F_2(s)$
Differentiation	$\frac{d}{dt}f(t)$	$sF(s) - f(0^-)$
Double differentiation	$\frac{d^2}{dt^2}f(t)$	$s^2F(s) - sf(0^-) - f'(0^-)$
Integration	$\int\limits_{0-}^{t}f(au)d au$	$\frac{1}{s}F(s)$
Time shift	$f(t-t_0)u(t-t_0), t_0 > 0$	$e^{-st_0}F(s)$
Convolution	$f_1(t) * f_2(t)$	$F_1(s)F_2(s)$
Initial value	f(0)	$\lim_{s\to\infty} sF(s)$
Final value	$f(\infty)$	$\lim_{s\to 0} sF(s)$

Fourier Series

Integrals

$$\int \cos(\omega t)dt = \frac{1}{\omega}\sin(\omega t)$$

$$\int \sin(\omega t)dt = -\frac{1}{\omega}\cos(\omega t)$$

$$\int t \cos(\omega t) dt = \frac{1}{\omega^2} \cos(\omega t) + \frac{t}{\omega} \sin(\omega t)$$

$$\int t \sin(\omega t) dt = \frac{1}{\omega^2} \sin(\omega t) - \frac{t}{\omega} \cos(\omega t)$$

Your Own

Trig Products -

$$\sin(a)\cos(b) = \frac{1}{2}[\sin(a+b) + \sin(a-b)]$$

$$\cos(a)\cos(b) = \frac{1}{2}[\cos(a+b) + \cos(a-b)]$$

$$\sin(a)\sin(b) = \frac{1}{2}[\cos(a-b) - \cos(a+b)]$$

Euler's Identities

$$\cos(\omega) = \frac{1}{2} [e^{j\omega} + e^{-j\omega}]$$

$$\sin(\omega) = \frac{1}{j2} [e^{j\omega} - e^{-j\omega}]$$

$$e^{j\omega} = \cos(\omega) + j\sin(\omega)$$

Fourier Series

given f(t) periodic in T so $\omega_0 = 2\pi/T$

$$f(t) = a_o + \sum_{n=1}^{\infty} a_n \cos(n\omega_o t) + b_n \sin(n\omega_o t) = A_o + \sum_{n=1}^{\infty} A_n \cos(n\omega_o t + \phi_n) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_o t}$$

coefficient formulae

$$a_o = \frac{1}{T} \int_{\langle T \rangle} f(t) dt, \quad a_n = \frac{2}{T} \int_{\langle T \rangle} f(t) \cos(n\omega_o t) dt, \quad b_n = \frac{2}{T} \int_{\langle T \rangle} f(t) \sin(n\omega_o t) dt$$

coefficient relationships

$$A_o = a_o = c_o$$
, $A_n \angle \phi_n = a_n - jb_n = 2c_n$

Your Own

EE230 Fourier Transforms

Transform Pairs

Transiorin rans		
	f(t)	$F(\omega)$
Definition	f(t)	$\int\limits_{-\infty}^{\infty}f\left(t\right) e^{-j\omega t}dt$
Unit impulse	$\delta(t)$	1
Unity	1	$2\pi\delta(\omega)$
Unit step	u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
Pulse, centered $\pm \tau$ wide	$u(t+\tau)-u(t-\tau)$	$\frac{2\sin(\omega\tau)}{\omega}$ (aka "sine")
Unit ramp (V-shaped)	t	$\frac{-2}{\omega^2}$
Exponential, right sided	$e^{-at} u(t)$	$\frac{1}{a+j\omega}$
Exponential, left sided	$e^{at} u(-t)$	$\frac{1}{a-j\omega}$
t ⁿ times exponential	$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$
Exponential, both-sided	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$
Complex exponential	$e^{j\omega_o t}$	$2\pi\delta(\omega-\omega_o)$
Sine	$\sin(\omega_o t)$	$j\pi[\delta(\omega+\omega_{o})-\delta(\omega-\omega_{o})]$
Cosine	$\cos(\omega_o t)$	$\pi[\delta(\omega+\omega_o)+\delta(\omega-\omega_o)]$
Damped sine	$e^{-at}\sin(\omega_o t)u(t)$	$\frac{\omega_o}{\left(a+j\omega\right)^2+\omega_o^2}$
Damped cosine	$e^{-at}\cos(\omega_o t)u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_o^2}$

Transform Properties

_	f(t)	$F(\omega)$
Linearity	$c_1 f_1(t) + c_2 f_2(t)$	$c_1 F_1(\omega) + c_2 F_2(\omega)$
Time shift	$f(t-t_0)$	$e^{-j\omega t_0}F(\omega)$
Frequency shift	$e^{j\omega_o t}f(t)$	$F(\omega - \omega_o)$
Time differentiation	$\frac{d}{dt}f(t)$ $\frac{d^n}{dt^n}f(t)$	$j\omega F(\omega)$ $(j\omega)^n F(\omega)$
Time integration	$\int\limits_{-\infty}^t f(\tau)d\tau$	$\frac{F(\omega)}{j\omega} + \pi F(0) \delta(\omega)$
Convolution in t	$f_1(t) * f_2(t)$	$F_1(\omega)F_2(\omega)$
Convolution in ω	$f_1(t)f_2(t)$	$\frac{1}{2\pi}F_1(\omega)*F_2(\omega)$