- P1 Concept: Working with impulse functions
 - Find: $\int_{-\infty}^{\infty} \frac{10 \, \delta(\omega)}{4 + \omega^2} d\omega$
 - **Hint:** Draw what $\delta(\omega)$ looks like. Sketch under that what $\frac{10}{4+\omega^2}$ roughly looks

like. Sketch under that what their product looks like. Then integrate.

- **P2** Concept: Integral definition of Fourier Transforms
 - **Find:** Fourier Transform $F(\omega)$ given f(t) to right
 - Simplify complex exponentials to cosines
 - **Hints:** Euler's Identity
 - The answer is purely imaginary with two cosine terms

