In the circuit below, $i(t) = 20 + 16\cos(10t + 45^\circ) + 12\cos(20t - 60^\circ)$ mA

P1 Concept: Frequency response

Find: v(t)

Hint: One part of the answer is $14.3 \cos(10t - 18.4^{\circ})$

P2 Concept: Average power given sum of sinusoids

Find: The average power dissipated by the resistor **Hint:** Answer is between 800mW and 900mW

P3 Concept: RMS values of a sum of sinusoids

Find: I_{RMS} (not V_{RMS})

Hint: Answer is between 10mA_{RMS} and 30mA_{RMS}

P4 Concept: Power delivered to a normalized load at a specific frequency

Find: Power delivered by the $5/\pi$ Hz component of the source if attached to a 1Ω load.

Hints: You can find it directly from one of the $A \angle \theta$ components of the source.

The answer is between 100 and 200 µW.