All questions refer to a power generator producing a voltage of

$$v(t) = 30 + 20\cos(60\pi t + 45^{\circ}) + 10\cos(120\pi t + 45^{\circ}) V$$

with an exiting current of

$$i(t) = 6 + 4\cos(60\pi t + 10^{\circ}) + 2\cos(120\pi t + 120^{\circ})$$
 A

Find: The V_{RMS} of the voltage waveform

$$V_{RMS}^{2} = \int_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} A_{n}^{2}$$

$$= 30^{2} + \frac{1}{2} (20^{2} + 10^{2})$$

$$= 900 + \frac{1}{2} (500)$$

$$= 1150$$

$$V_{RMS} = \sqrt{1150} = 33.9 V_{RMS}$$

Find: The I_{RMS} of the voltage waveform

$$I_{\text{RMS}} = 6^2 + \frac{1}{2}(4^2 + 2^2)$$

= 46
 $I_{\text{RMS}} = 6.78 \, \text{Agns}$

Find: The total average power delivered by the generator

The total average power derivered by the generator
$$\begin{array}{ll}
P_{70TAL} &= V_{0L} T_{0L} + \frac{1}{2} \sum_{n=1}^{\infty} V_n T_n \cos(\phi_{v_n} - \phi_{In}) \\
&= (30)(6) + \frac{1}{2} \left[20.4 \cos(35^\circ) + 10.2 \cos(75^\circ) \right] \\
&= 180 + 40 \cos(35^\circ) + 10 \cos(75^\circ) \\
&= 180 + 32.8 + 2.5^\circ \\
&= \boxed{215 W}
\end{array}$$

Find: (Real-world) The device is supposed to deliver a pure DC source but it appears to have some contamination from nearby electronic devices. What is the percentage of the total output power contaminated by 60Hz?

$$\begin{array}{l} 60Hz \rightarrow \omega = 2\pi f = 120\pi \\ P_{60} = \frac{1}{2}V_{60} T_{60} \cos(\phi_{V60} - \phi_{T60}) \\ = \frac{1}{2} \cdot 10 \cdot 2 \cos(75^{\circ}) \\ = 2.59 \end{array}$$

$$\frac{P_{60}}{P_{70701}} \times 100\% = \frac{2.59}{215} \cdot 100\% = 1.20\% 60Hz power contamination$$