

All problems use the following waveform and schematic. Note the waveform is a full-bridge rectified sin.

P1 Concept: Fourier Series cos/sin analysis

Find: DC and first two harmonics of input waveform in a,b form. Make coeffs

numeric, not symbolic (e.g. 1.27 not $4/\pi$).

Hints: • While the waveform's $\omega_0 = 2\pi$, it is not $\sin(2\pi t)$ from $0 \le t < 1$. It is either twice or half that frequency to get just the upper half of sin in $0 \le t < 1$.

a0 has 3 and a 6 in it (not necessarily in that order)
a1 has a 4 and a 2 in it (not necessarily in that order)

P2 Concept: Fourier Series magnitude/phase analysis Find: A_0 , $A_1 \angle \varphi_1$, $A_2 \angle \varphi_2$ of the input waveform

P3 Concept: Frequency transfer functions

Find: $H(\omega)$

Hints: • There is a 5 in the numerator and a simple single-pole denomenator

P4 Concept: Fourier Series circuit analysis

Find: A'_0 , $A'_1 \angle \varphi'$, $A'_2 \angle \varphi'$ of the output waveform • A_0 ' has a 3,6 in it, not necessarily in that order • A_1 ' has a 2,6 in it, not necessarily in that order

P5 Concept: Fourier Series synthesis

Find: Output waveform as constructed by its DC and first two harmonics

P6 Not for grade, just a thought question: if you were doing this for industry, how would you know how many harmonics you need to add to get an answer that was, say, accurate to about 1%?