All problems refer to the following waveform: **P1** Concept: Symmetry and FS. **Find:** What kind of symmetry does this waveform have? What significance does this have on the Fourier Series coefficient values? **P2** Concept: a_n , b_n Fourier Series analysis. Find: Find a_0 , a_1 , a_2 , a_3 , b_1 , b_2 , b_3 Fourier Series coefficients. Calculate them numerically, e.g. 1.27 not $4/\pi$. **Hints:** • Consider symmetry. • $b_2 = 0.318$ **P3** Concept: A_n , ϕ_n Fourier Series analysis. **Find:** Find A_0 , A_1 , A_2 , A_3 , ϕ_1 , ϕ_2 , ϕ_3 Fourier Series coefficients. Calculate them numerically, e.g. 1.27 not $4/\pi$. **Hint:** $A_2 = 0.318 \angle -90^{\circ}$ **P4** Concept: Fourier Series reconstruction. **Find:** Plot the reconstructed function f(t) using the DC and first three harmonics calculated above from $-5 \le t \le 5$. **Hints:** • It should look vaguely similar to the original waveform, especially around t=0 • If using Matlab, use linspace to make your t vector, and plot to plot the result **P5** Extension: Ungraded thought question. How would you reconstruct f(t) using the first 1,000 harmonics?