
All problems use the following periodic waveform g(t). For all problems give numeric answers, e.g. not $2/\pi$ but 0.6366.

P1 Concept: Identify periodic waveform characteristics

Find: T, f_0 , ω_0

P2 Concept: Fourier Series sin/cos trig decomposition

Find: The coefficients a_0 , a_1 , a_2 , a_3 , b_1 , b_2 , b_3 so

 $a_0 + a_1 \cos(\omega_0 t) + b_1 \sin(\omega_0 t) + a_2 \cos(2\omega_0 t) + b_2 \sin(2\omega_0 t) + a_3 \cos(3\omega_0 t) + b_3 \sin(3\omega_0 t)$

most closely approximates g(t). (They become identical as $n \to \infty$).

For any credit, the answers must be numeric, e.g. not $2/\pi$ but 0.6366.

Hints: • Solve carefully; the rest of the assignment depends on P2's answer.

• Like CP's, solve for a_n , b_n as functions of n first. Then, substitute n=1, 2, 3.

• a_0 is between 3 and 4. a_3 is 0.53, and b_3 is 1.59.

P3 Concept: Fourier Series $A_n \cos(n \omega_0 t + \phi_n)$ trig decomposition

Find: The coefficients A_0 , A_1 , A_2 , A_3 , ϕ_1 , ϕ_2 , ϕ_3 so that

 $A_0 + A_1 \cos(\omega_0 t + \phi_1) + A_2 \cos(2\omega_0 t + \phi_2) + A_3 \cos(3\omega_0 t + \phi_3)$ approximates g(t).

For *any* credit, the answers must be numeric, e.g. not $2/\pi$ but 0.6366.

Hint: • $A_1 = 5.02$, and $\phi_1 = -108^{\circ}$.

P4 Concept: Amplitude spectra, phase spectra

Find: Sketch the amplitude spectra and phase spectra of g(t) for $0 \le \omega \le 3\omega_0$. A hand-sketch is

fine as long as each plot is fully labeled. Label the ω axis with numbers (e.g. not $2\omega_0$ but

2.52).

Hints: • There is a A_0 but no ϕ_0 .

• To plot A=[1, 2.5], w=[0, pi] in Matlab: \gg stem(w,A)

P5 Concept: Fourier Series synthesis

Find: Use any software program to attach a plot of your approximation to g(t) by summing the

DC and first three AC harmonics over two periods of the waveform. That is, plot

 $A_0 + A_1 \cos(\omega_0 t + \phi_1) + A_2 \cos(2\omega_0 t + \phi_2) + A_3 \cos(3\omega_0 t + \phi_3)$ or

 $a_0 + a_1 \cos(\omega_0 t) + b_1 \sin(\omega_0 t) + a_2 \cos(2\omega_0 t) + b_2 \sin(2\omega_0 t) + a_3 \cos(3\omega_0 t) + b_3 \sin(3\omega_0 t)$

(they should be the same thing).

Hints: • It should look grossly similar to g(t). If you computed the Fourier Series components

up to n=10 instead of n=2 it would look very similar.

• To plot $2 + \cos(2t + 45^\circ)$ from $0 \le t \le 2.5$ in Matlab:

 \gg t = linspace(0, 2.5, 1000); % type "help linspace" to see what it does

 \gg g = 2 + cos(2*t + 45*pi/180); % cos takes arguments in radians, not degrees

 \gg plot(t,g); % use title, xlabel, and ylabel to embellish