All problems use the following periodic waveform g(t). For all problems give numeric answers, e.g. not $2/\pi$ but 0.6366. P1 Concept: Identify periodic waveform characteristics **Find:** T, f_0 , ω_0 P2 Concept: Fourier Series sin/cos trig decomposition **Find:** The coefficients a_0 , a_1 , a_2 , a_3 , b_1 , b_2 , b_3 so $a_0 + a_1 \cos(\omega_0 t) + b_1 \sin(\omega_0 t) + a_2 \cos(2\omega_0 t) + b_2 \sin(2\omega_0 t) + a_3 \cos(3\omega_0 t) + b_3 \sin(3\omega_0 t)$ most closely approximates g(t). (They become identical as $n \to \infty$). For any credit, the answers must be numeric, e.g. not $2/\pi$ but 0.6366. **Hints:** • Solve carefully; the rest of the assignment depends on P2's answer. • Like CP's, solve for a_n , b_n as functions of n first. Then, substitute n=1, 2, 3. • a_0 is between 3 and 4. a_3 is 0.53, and b_3 is 1.59. **P3** Concept: Fourier Series $A_n \cos(n \omega_0 t + \phi_n)$ trig decomposition **Find:** The coefficients A_0 , A_1 , A_2 , A_3 , ϕ_1 , ϕ_2 , ϕ_3 so that $A_0 + A_1 \cos(\omega_0 t + \phi_1) + A_2 \cos(2\omega_0 t + \phi_2) + A_3 \cos(3\omega_0 t + \phi_3)$ approximates g(t). For *any* credit, the answers must be numeric, e.g. not $2/\pi$ but 0.6366. **Hint:** • $A_1 = 5.02$, and $\phi_1 = -108^{\circ}$. P4 Concept: Amplitude spectra, phase spectra **Find:** Sketch the amplitude spectra and phase spectra of g(t) for $0 \le \omega \le 3\omega_0$. A hand-sketch is fine as long as each plot is fully labeled. Label the ω axis with numbers (e.g. not $2\omega_0$ but 2.52). **Hints:** • There is a A_0 but no ϕ_0 . • To plot A=[1, 2.5], w=[0, pi] in Matlab: \gg stem(w,A) **P5** Concept: Fourier Series synthesis Find: Use any software program to attach a plot of your approximation to g(t) by summing the DC and first three AC harmonics over two periods of the waveform. That is, plot $A_0 + A_1 \cos(\omega_0 t + \phi_1) + A_2 \cos(2\omega_0 t + \phi_2) + A_3 \cos(3\omega_0 t + \phi_3)$ or $a_0 + a_1 \cos(\omega_0 t) + b_1 \sin(\omega_0 t) + a_2 \cos(2\omega_0 t) + b_2 \sin(2\omega_0 t) + a_3 \cos(3\omega_0 t) + b_3 \sin(3\omega_0 t)$ (they should be the same thing). **Hints:** • It should look grossly similar to g(t). If you computed the Fourier Series components up to n=10 instead of n=2 it would look very similar. • To plot $2 + \cos(2t + 45^\circ)$ from $0 \le t \le 2.5$ in Matlab: \gg t = linspace(0, 2.5, 1000); % type "help linspace" to see what it does \gg g = 2 + cos(2*t + 45*pi/180); % cos takes arguments in radians, not degrees \gg plot(t,g); % use title, xlabel, and ylabel to embellish