P1 Concept: Deriving transfer function $H(\omega)$ and its use in SSS analysis

Find: a) $H(\omega)$ of the circuit if L = 2H, $R = 20\Omega$, and C = 0.1F and

b) find $v_0(t)$ if $v_i(t) = \cos(2t)$

Hints: • There are 5's in the num and den

• $H(\omega)$ is a function of ω , not s!

• The phase angle of v₀ is "nice"

L

P2 Concept: Deriving transfer function $H(\omega)$ and its use in SSS analysis

Find: a) $H(\omega)$ of the circuit. Write as a simple polynomial ratio.

b) tell if it is a lowpass (passes low frequencies, blocks high ones) or highpass filter (passes high freqs, blocks low ones).

Hints: • Try substituting $\omega = 0$ and ∞ to see if the filter is a low or highpass.

• The numerator is jRL ω , where R is either R_1 or R_2 .

