- 1. If $v(t) = 3te^{-2t}u(t-1)$, find V(s). Hint: only numbers in solution are 2,3.
- 2. Find y(0) and $y(\infty)$ if the system is $H(s) = \frac{2}{s^2 + 6s + 10}$ and the input is $x(t) = 5e^{-2t}$. Hint: Not much.
- 3. Same as above but find y(t). Hint: use above problem to verify at y(0) and $y(\infty)$.
- 4. Find y(t) = x(t) * h(t) by both integral and graphical methods if x(t) = -h(t) = u(t-1). (Note: on a test, the graphical problem would be limited to flat-topped functions (steps and pulses), but it would probably have exponentials if the problem specified use of integral methods). Hint: y(-1) = 0, y(2) = 0, y(4) = -2.
- 5. Find the circuit
 - a. transfer function
 - b. impulse response
 - c. differential equation
 - d. s-plane plot

Hint: a) has only integers 2, 5, and 6 if written in standard format.

- 6. The differential equation describing a system is 3y'(t) + y(t) = x''(t). Find the output y(t) if the input is $x(t) = 4e^{-t/3}$. Hint: is it proper? Hint: 4/27 in answer.
- 7. Thought question: If you are given a circuit, whose input is not specified (say it is an unknown voltage source), is it possible to find the circuit's system transfer function? Explain.