P1 Concept: Inverse Laplace Transform with real, unique poles

Find:
$$f(t)$$
 given $F(s) = \frac{2s}{s^2 + 3s + 2}$

Hint: One coefficient is 4

P2 Concept: Inverse Laplace Transform with real, repeated poles

Find:
$$f(t)$$
 given $F(s) = \frac{4}{(s+1)^2(s+2)}$

Hint: One coefficient is 4

P3 Concept: Inverse Laplace Transform with three parts including step functions

Find:
$$f(t)$$
 given $F(s) = \frac{s^2 + 9s + 6}{s^3 + 4s^2 + 3s}$

Hint: One coefficient is 2

P4 Concept: Inverse Laplace Transform: improper fractions = impulses

Find:
$$f(t)$$
 given $F(s) = \frac{4s^2 + 18s + 11}{s^2 + 5s + 4}$

Hint: Is it proper?

P5 Concept: Inverse Laplace Transform with complex conjugate roots

Find:
$$f(t)$$
 given $F(s) = \frac{10}{(s+2)(s^2+6s+10)}$

Hint: The answer has a non-integer between 7 and 7.5