P1 Write an equation for the following sinusoid in terms of a cosine function, i.e. $A \cos(\omega t + \theta)$:

Don't forget units!

- a) What is its period (in s)? Hint:between 2 s and 7 s.4 s between repetitions
- b) What is its frequency (in Hz)? Hint: between 0.1 and 0.5 Hz. $f = 1/T = \frac{1}{4} \frac{$
- c) What is its angular frequency (ω)? Hint: between 1 and 3. $\omega = 2\pi f = \pi/2 = 1.57 \text{ rad/s}$

P2 Reduce the following expression to a single cosine with a phase angle noted in degrees in the range of $(-180^{\circ} \le \theta \le 180^{\circ})$. Hint: Magnitudes are always positive, and for this problem is a whole number; the phase of this problem should be negative.

$$6\cos(4t) - 8\sin(4t)$$

From class notes: $A \cos(\omega t) + B \sin(\omega t) = C \cos(\omega t - \theta)$

$$C = \sqrt{A^2 + B^2}$$
, $\theta = \tan^{-1}(B/A) \{+180^{\circ} \text{ if } A < 0\}$

$$C = \sqrt{6^2 + (-8)^2}, \theta = \tan^{-1}(-8/6)$$

$$C = 10, \theta = -53.1^{\circ}$$

$$10\cos(4t - 53.1^{\circ})$$

