Given: 2nd Order Series or // RLC Circuit. Find: X. X may be any Voltage or Current.

(1) Find IC

a) $\underline{Draw} \ t < 0$ $find V_c, i_L$ b) $\underline{Draw} \ t = 0^+$ $find V_c, i_L$ Find V_c, i_L $find V_c, i_L$ 1) Find IC

Find $\omega_0 = \sqrt{\frac{1}{RC}}$, $\alpha = \frac{R}{RL}$ (series) or $\frac{1}{2RC}$ (parallel) $S = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$

- Overdamped $\alpha > \omega_0$ $x_n = C_1 e^{S_1 t} + C_2 e^{S_2 t}$ Critically damped $\alpha = \omega_0$ $x_n = C_1 e^{S_1 t} + C_2 e^{S_2 t}$ Underdamped $\alpha < \omega_0$ $x_n = C_1 e^{S_1 t} + C_2 e^{S_2 t}$ $\alpha < \omega_0$ $x_n = C_1 e^{S_1 t} + C_2 e^{S_2 t}$ $\alpha < \omega_0$ $x_n = C_1 e^{S_1 t} + C_2 e^{S_2 t}$ $\alpha < \omega_0$ $x_n = C_1 e^{S_1 t} + C_2 e^{S_2 t}$ $\alpha < \omega_0$ $x_n = C_1 e^{S_1 t} + C_2 e^{S_2 t}$ $\alpha < \omega_0$ $\alpha < \omega_0$ b) Overdamped
- (3) Find Forced Solution $a) \underline{\text{Draw } t = \infty} \quad \downarrow \Rightarrow 0 \quad \Rightarrow |$ b) Find Xs
- (4) Find total response α) $x(t) = X_n(t) + X_f(t)$ b) Solve for C, and C2 in X(t) using ICs

Component + < 0 + = 0 + > 0 $+ = \infty$ + > 0 +Component

Example

1)
$$t < 0$$
 $V_c = 7$
 $V_c = 7$

$$t>0$$

$$13 \stackrel{i}{=} 100$$

$$100 \stackrel{i}{=} 100$$

$$2 + 30$$

$$13 + \frac{1}{500}$$

$$0 = \frac{1}{\sqrt{LC}} = 10$$

$$\alpha = \omega_0 \Rightarrow$$
 Critically damped, $S = -10, -10$
 $V_n = C_1 e^{-10t} + C_2 t e^{-10t}$

$$3 t = \infty$$

$$13 \stackrel{+}{=} 0$$

$$V_{f} = 13$$