

P1: Determine the time constant for the circuit below. Hint: between 3 and 4 μ s.

P2: The switch below moves instantaneously from A to B at t = 0. Find v for t > 0. Note: In all schematics, the position of the switch does not matter: what matters is the direction of the arrow. The switch moves in the direction of the arrow at t=0, so for t<0 it is in the opposite direction of the arrow (i.e. connected to A), and for t>0 it is moved in the direction of the arrow (i.e. connected to B). Hint: all integers in solution and multiples of 10.

P3: Given the following. Note the direction of the arrow; the switch is in the opposite arrow direction for t<0 (ie closed) and moved in the direction of the arrow for t>0 (ie open). Hint: part b) between 50 and 75 ms.

$$\begin{array}{c|c}
t = 0 \\
9 \text{ k}\Omega \\
\hline
36 \text{ V} \\
\end{array}$$

$$\begin{array}{c|c}
9 \text{ k}\Omega \\
\hline
3 \text{ k}\Omega \\
\end{array}$$

$$\begin{array}{c|c}
20 \mu\text{F} = -v_0 \\
\hline
-
\end{array}$$

- a) Find v(t) for t>0.
- b) Find when v(t) = 1/3 v(t=0). That is, how long does it take for the capacitor's voltage to drop to 1/3 of its initial voltage?