

1. Find v(t) for all time

Before
$$t=0$$
 $24\sqrt{2}$

After $t=0$
 $T=R(-(2k)(250\mu)=500m=\frac{1}{2}$
 $T=R(-(2k)(250\mu)=500m=\frac{1}{2}$
 $T=R(-(2k)(250\mu)=500m=\frac{1}{2}$
 $T=R(-(2k)(250\mu)=500m=\frac{1}{2}$
 $T=R(-(2k)(250\mu)=500m=\frac{1}{2}$
 $T=R(-(2k)(250\mu)=500m=\frac{1}{2}$
 $T=R(-(2k)(250\mu)=500m=\frac{1}{2}$

2. Find $i_1(t)$ for t > 0

by
$$\Omega$$
's Law, i,(t) = $V(t)/2k$
= $2e^{-at} M \Lambda$, $t \ge 0$

3. Find $i_2(t)$ for t > 0

4. Roughly, when is cap 99% discharged?

5. Exactly, when cap 50% discharged?

Exact 50% discharged when V = 50% of 4V = 2V $a = 4e^{-2t}$, solve for t $\ln(\frac{1}{a}) = -2t = 2t = -\frac{1}{a} \ln(\frac{1}{a}) = 0.3475$ check: makes intuitive sense; a little less than T = 0.5 sec