1. Given
$$v(t) = \begin{cases} 0, & t \le 0, \\ 4t, & 0 < t \le 1 \\ 4e^{-(t-1)}, & t > 1 \end{cases}$$

across a $\frac{1}{2}\mu F$ capacitor

- **Find** i(t) through it
- **Find** p(t) delivered to it (power) b)
- c)
- Find w(t) stored in it (energy) Find $\int_0^\infty p(t) dt$ and comment on its significance

2. **Given**
$$i(t) = \begin{cases} 0, & t \le 0 \text{ s}, \\ 500t, & 0 < t \le 20 \mu\text{s} \\ 0, & t > 20 \mu\text{s} \end{cases}$$

is delivered to an uncharged $0.2\mu F$ cap.

- **Find** v(t) across the capacitor for $t \ge 0$ a)
- Why does a voltage remain on the capacitor after the current is zero from an intuitive viewpoint?
- Given the following circuit 3.

Find
$$v_1$$
, v_2 , v_3 , i_1

