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An introduction to  
soft-core processors and  
a biomedical application

D
espite the ubiquity of micro-
controllers, widespread use 
of soft-core microprocessors 
is much less common. Most 
undergraduate curricula 

have a digital course involving field 
programmable gate array (FPGA) 
programming, in languages such 
as VHDL or Verilog, and separately 
have a microcontroller course that 
uses the C language. But few syn-
thesize these two topics to involve 
programming an FPGA to simulate 
a microcontroller.

This article describes a senior-
level elective course in which stu-
dents design a chemotherapeutic 
cancer research device using a soft-
core processor at the heart of their 
product. The students describe how 
they chose to use a soft-core pro-
cessor and how the implementation 
involved many nights of struggle, 
cumulating with debugging at 70 
mi/h in a car to make the delivery 
deadline.

What are soft-core processors?
Microcontrollers are familiar to 
most electrical engineers. The word 
microcontroller is commonly associ-
ated with the PIC and ATMega chips 
and development boards such as 
the Arduino and Raspberry Pi, a 
few of the popular and widely-sup-
ported microcontrollers and devel-
opment boards in use today by 
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makers, students, and hobbyists. 
Microcontrollers pack a lot of func-
tionality on a single chip, but for 
bigger or faster tasks, one may have 
to turn to FPGAs. When FPGAs are 
mentioned, engineers often begin to 
sweat a little. For many, FPGAs 
bring back memories of digital 
design and painful lines of hard-
ware description language (HDL). 
Modern design tools have changed 
this and allow anyone needing the 
f lexibil ity and performance of 
FPGAs while avoiding the difficul-
ties of HDL programming.

So what is a soft-core processor? 
A soft-core processor is a program 
prewritten in HDL that provides 
a processing core that runs on an 
FPGA. It allows the programmer to 
define peripherals such as general 
purpose input/output lines (GPIOs), 
serial parallel interfaces (SPIs), and 
universal asynchronous receiver/
transmitters (UARTs) at compile-
time so he or she can design a power-
ful embedded system uniquely cus-
tomized to his or her requirements. 
Need a system with 40 pulse-width 
modulated (PWM) outputs, a 16-b-
wide parallel output port, and 12 
serial ports? No problem. With the 
design tools available today, one can 
design an embedded system with a 
soft-core processor without writing a 
single line of HDL.

FPGA design tools such as Xilinx 
Vivado define the soft-core proces-
sor using graphical drag-and-drop 
operations. Then the C++ program 
that runs on the soft-core processor 
is compiled using a different design 
tool such as the Xilinx software 
development kit (SDK). On power-
up, the hardware design is loaded 
onto the FPGA to create the soft-
core processor and any additionally 
defined peripherals. Then the C++ 
program is loaded onto that soft-
core processor, and finally the pro-
gram executes.

FPGAs have development boards 
just as do many microprocessors. 
These development boards are great 
places to start designing embed-
ded systems that use a soft-core 
processor. A relatively new develop-
ment board for the Artix 7 FPGA is 

the ARTY by Digilent. What makes 
the ARTY particularly interesting is 
that it was designed with the Micro-
blaze soft-core processor in mind. 
The ARTY reference page provides 
several getting-started examples 
using the Microblaze. The ARTY 
sports 256 MB of external RAM, 
external Flash for storing both the 
FPGA binary definition file and the 
C program that it runs, and a USB 
UART port to program the device. 
In terms of input/output (I/O), the 
ARTY boasts the familiar Arduino 
Uno footprint and an assortment of 
peripheral modular (PMOD) connec-
tors; switches; push buttons; and 
red, green, and blue light-emitting 
diodes.

Advantages
In the Vivado design environment, 
digital logic is defined using a block 
diagram rather than writing tradi-
tional HDL code. That’s right, no 
HDL is needed. Those who have 
used LabVIEW will see some simi-
larities with using the Vivado block 
design tool. Adding a soft-core 
processor, such as the Microblaze, 
becomes as easy as dragging and 
dropping from a toolbox, and its 
peripherals are defined using a 
setup wizard. Wiring blocks are 
done by simply clicking and drag-
ging. Vivado even automatically 
makes the basic connections to 

implement bare-bones microcon-
troller functionality.

If a project calls for both a mi-
crocontroller and FPGA, a soft-core 
processor can decrease the overall 
printed circuit board (PCB) foot-
print, speed development time, and 
permit more flexible redesigns by 
implementing both on a single chip. 
A soft-core processor allows the user 
to customize the functionality of the 
microcontroller. Setup wizards let 
the programmer choose any combi-
nation of I/O, microprocessor and 
SPI clock speeds, amounts of RAM, 
and, in some cases, interfacing log-
ic levels. If a project calls for more 
computing power, more cores can 
be added, all operating simultane-
ously, while the FPGA supplies the 
glue logic needed to connect them to 
outboard peripherals.

From a data acquisitions appli-
cations standpoint, the Microblaze 
and other soft-core processors offer 
the advantage of deterministic tim-
ing, unlike application processors 
such as the Rasperry Pi that typi-
cally run Linux as an application-
scheduling operating system. This 
lets one precisely control when data 
is being read from a pin without 
any jitter, since the FPGA nature 
of the device lets one rewrite inter-
rupt routines to become truly inde-
pendent parallel routines that are 
handled simultaneously. Develop-

(a) (b)

FIG1 (a) The part of a block design implementing a Microblaze soft-core processor. 
This shows the ease in implementing a soft-core processor using powerful design tools 
such as Viviado, which turns soft-core microprocessor design into a drag-and-drop op-
eration. (b) Part of a program designed to run on this Microblaze that configures its GPIO 
and SPI interfaces at run-time. Programs are written in C++, a language familiar to most 
engineers. 
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ment boards such as the ARTY also 
provide prodigious amounts of RAM 
(256 MB of DDL3!), significantly 
more than most microcontroller de-
velopment boards and provide simple 
block-design methods to interface 
them to the soft-core microcontroller. 

The cons
Development environments range 
from lightweight and sleek to bulky 
and complicated. The popular devel-
opment environment used with the 
ARTY for developing a Microblaze 
soft-core-processor-based system is 
Vivado, and it is definitely of the 
800-lb-gorilla variety. Open Vivado 
and prepare to be blinded by win-

dows, sidebars and menus. And 
Vivado is not the only design envi-
ronment needed; the C code that 
runs on the Microblaze is developed 
on the Xilinx SDK. For those who 
enjoy the simplicity of the Arduino 
integrated development environ-
ment, Vivado is a totally different 
beast.

Moving from the prototype phase 
to a product with an FPGA is also 
much more complicated than when 
using microcontrollers. Prototypes 
using hardware microcontrollers 
can often be made using through-
hole versions, or relatively simple 
small outline integrated circuit dual 
inline package adapters that can be 
hand soldered. Not so with FPGAs, 
which have much higher pin counts 
and pin densities precluding hand-

assembly, and which often come in 
packages such as ball grid arrays 
that require specialized equipment 
to wave-solder. FPGAs also require 
external support circuitry, such as 
electrically erasable programmable 
read-only memory, to store the logic 
design, code, and random access 
memory (RAM) in separate chips. To 
produce a PCB with an FPGA and its 
circuitry typically requires at least 
four layers.

To get started or seek help im-
plementing functions such as the 
UART or SPI on the soft-core micro-
controller, one must turn to online 
communities and documentation. 
The wealth of carefully-documented 
functions and examples that ac-
company many hardware microcon-
trollers are simply not present for 
FPGA development objects such as 
the ARTY, Microblaze, and Vivado. 
The supplied application program-
ming interface is helpful but often 
lacks reference examples. The get-
ting started page for the ARTY is, 
similarly, a great resource but is lit-
tered with “work-in-progress” and 
“fix-me” tags suggesting what is 
written in those sections may not be 
true. As soft-core microcontrollers 
rise in popularity, this situation will 
continue to improve, but compared 
with the civilized world of microcon-
trollers, FPGA design definitely has a 
Wild West feeling.

Real-world application
At the Virginia Military Institute, 
Dr. James Squire offers a course in 
electro-mechanical design. In this 
course, senior electrical and com-
puter engineering students are 
given a real-world engineering con-
sulting project and must interact 
with an off-campus client to build a 
device that solves a problem. This 

students were asked to design a sys-
tem to measure the impedance of 
cells as they grow in a culture well 
to be used in chemotherapeutic 
cancer research. It involved creating 
a front-end graphical user interface 

TABLE 1. XXXX

MICROBLAZE ON ARTY ARDUINO UNO REV 3 RASPBERRY PI 3

Processor Speed 100 MHz 16 MHz 1.2 GHz

RAM 256 MB DDR3L 2K SRAM 1 GB LPDDR2

Operating System No No Yes

A comparison of a few of the capabilities of the most popular hardware microcontroller development boards 
with that of the ARTY, a development board for the Artix 7 FPGA. The Raspberry Pi has a higher clock speed and 
more RAM than either the Arduino or ARTY, but it requires an operating system to run more than one thread, 
which may not permit timing-critical applications, such as data acquisition, that are intolerant of jitter.

FIG2 The Wild West of FPGA design: A scope screenshot taken while debugging SPI 
communications errors. The blue channel should be a square wave showing data being 
sent from an external ADC to the MISO pin on the ARTY. The spikes on the channel sug-
gest that the reference documentation for the software-designed SPI port have reversed 
the MOSI and MISO pin names, so the FPGA is attempting to (feebly) push data out on 
its input line. We assume reference documentation to be correct, but this scope capture 
shows that is not always the case. 



was  capable  of  up to 400 ksps, al- 

		  IEEE POTENTIALS	 January/February 2018	 ■	 5

(GUI) running on a PC written in C# 
that communicated to a real-time 
phase-locked differential amplifier 
run by a microcontroller. The ana-
log subsystem design and PC/
microcontroller interface turned out 
to be relatively simple; the logic sub-
system that permitted analog to 
digital (A/D) acquisition of 18 b of 
data at a rate of 400,000 samples/s 
for up to 10 s at a time turned out to 
be significantly more complicated.

We completed the contract in 
three phases. The first phase simpli-
fied the engineering requirements 
to allow data of 8-b precision to be 
taken at 100 samples/s for 1 s. This 
speed enabled the use of a common 
microcontroller development board, 
the Teensy by PRJC. The Teensy 
hosts a 16-b microcontroller with 
more than enough RAM to hold the 
data collected at this slow speed, an 
integrated A/D unit, and onboard 
USB to allow the upload of collected 
data. When this was successfully 
built and tested, the project entered 
the second phase in which an ex-
ternal A/D converter was interfaced 
to increase the signal acquisition 
precision to 18 b. The A/D chosen 

though at this phase, we remained 
at 100 samples/s. The Teensy re-
mained to control the A/D, store 
the A/D data, and communicate 
with the PC to upload the data.

The final phase was by far the 
most challenging: to increase sam-
pling speed by over three orders of 
magnitude to 400 ksps. The A/D was 
emitting data using a serial inter-
face; 18 b at 400 ksps requires very 
tight timing, especially since over 
half of the time the A/D converter 
was performing the conversion and 
therefore unable to communicate. 
This speed required a microcon-
troller with a very fast clock.

Further, we wanted to embed a 
sampling timer on the microcon-
troller to trigger the start of each 
A/D conversion, but the fastest mi-
crocontrollers we could find ran 
Linux or another scheduling operat-
ing system, making it impossible to 
obtain clock-pulse-accurate jitter-

less A/D triggering. Another chal-
lenge was the raw amount of data: 
18 b of data at 400 ksps over a 10-s 
experiment generates over 10 MB of 
data, requiring external RAM.

The solution came with the ARTY 
development board. The ARTY uses 
an Artix 7 FPGA and 256 MB of 
RAM, all on an easy-to-prototype 
development board. We used the 
Teensy microcontroller for all non-
time-critical management func-
tions including using its USB port 
to upload the sampled data to the 
PC. The ARTY was used in the time-
critical loop to trigger the A/D con-
versions, serially clock the data out 
of the A/D, and store it in its DDL3 
RAM. Then it provided the data to 
the Teensy in chunks using a sim-
ple handshaking protocol for the 
Teensy to send back to the PC for 
analysis and display.

The team’s initial plan was not to 
use a soft-core microcontroller but 
rather to design a state machine in 
the FPGA to trigger the A/D convert-
er, clock out the conversion serially, 
and store the conversion in succes-
sive RAM locations, since these are 
simple, repetitive operations. This 
was more complex than we antici-
pated. Unlike the detailed documen-
tation, tutorials, and example code 
available for many popular micro-
controllers, it quickly became appar-

ent that FPGA programmers form a 
smaller community, and, therefore, 
FPGA documentation is less-exten-
sive. Vivado is not intuitive to use.

The first problem we attempted to 
solve in building the state machine 
was accessing the onboard DDR4 
RAM, and after countless hours 
searching and experimenting, we 
were still dead in the water. Look-
ing through the ARTY tutorial page, 
we came across a section that men-
tioned the soft-core microcontroller 
named Microblaze in a “hello world” 
tutorial. This simple program gave 
the basic reference design for the 
softcore microcontroller, which ulti-
mately laid the foundation to solve 
all the problems we encountered. It 
allowed us to change the approach 
of the team from being HDL coders 
to being traditional C++ coders, a 
language we had considerably more 
experience using. The tutorial also 
showed how to set up the RAM IP 
Block with the Microblaze, which 
solved the problem of memory inter-
facing. Further optimization could 
allow the Microblaze to communi-
cate through the ARTY’s USB port to 
the PC, eliminating the Teensy hard-
ware microcontroller entirely.

Murphy’s law strikes
Blazing down the highway at 70 
mi/h, we headed to Massachusetts 

FIG3 The final product delivered to the client’s biomedical lab. The product housing is 
removed to reveal the analog circuitry populated on a custom PCB that is controlled by 
the ARTY (circled in red). The laptop is running a GUI written in C# to control various 
data acquisition parameters and analyze and display the collected data. 
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to deliver the product to Dr. Antho-
ny English’s lab at  Western New 

England University. I 
 sat in the back seat with a 

laptop, using the 10-h ride to clarify 
comments in the code and add ref-
erence documentation, both of 
which seemed trivial enough to 
leave for the car ride. Halfway there, 
I double-checked to make sure the 
newly-commented code would syn-
thesize (FPGA-speak for compile) 
correctly, and I was alarmed to find 
it generating a ton of errors. After 
some digging, I realized the Vivado 
package had determined that the 
car ride over would be a good time 
to update its core libraries to a new, 
not fully compatible, version. With a 
couple of hours left I located the 
troublesome libraries and began 
patching the code. As we pulled into 
the parking lot, I frantically typed 
my last lines of code and made sure 
everything verified. It was a little 
closer than I would have liked to 
end the semester-long project, but it 
worked well and Dr. English is cur-
rently using it to obtain data.

If you need flexibility and per-
formance in your next embedded 

PC C# Program to
Teensy:

– Sample Time
– Collect Data

ARTY to ADC:

– Start Conversion
– Collect Data (SPI)

– Collection Complete
ARTY to Teensy:

– Send Back Collection

Teensy to ARTY:

Arty to Teensy:

– Send Collection (UART)

Teensy to PC C#
Program:

– Send Collection (USB)

Teensy to ARTY:

– Sample Time
– Start Collection

FIG5 After a hair-raising debugging ride to his laboratory, we present our client with the 
final product and demonstrate that it meets his requirements. 
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project, consider a soft-core proces-
sor. The ARTY provides an excellent 
introduction—purchase one, read 
the reference page on the Digilent 
website, complete a few of their tu-
torials, and get started on your own 
design.
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