
2	 ■	 January/February 2018	 IEEE POTENTIALS 0278-6648/18©2018IEEE

Dominic Romeo, Joseph LaMagna, Ian Hogan,
and James Squire

An introduction to
soft-core processors and
a biomedical application

D
espite the ubiquity of micro-
controllers, widespread use
of soft-core microprocessors
is much less common. Most
undergraduate curricula

have a digital course involving field
programmable gate array (FPGA)
programming, in languages such
as VHDL or Verilog, and separately
have a microcontroller course that
uses the C language. But few syn-
thesize these two topics to involve
programming an FPGA to simulate
a microcontroller.

This article describes a senior-
level elective course in which stu-
dents design a chemotherapeutic
cancer research device using a soft-
core processor at the heart of their
product. The students describe how
they chose to use a soft-core pro-
cessor and how the implementation
involved many nights of struggle,
cumulating with debugging at 70
mi/h in a car to make the delivery
deadline.

What are soft-core processors?
Microcontrollers are familiar to
most electrical engineers. The word
microcontroller is commonly associ-
ated with the PIC and ATMega chips
and development boards such as
the Arduino and Raspberry Pi, a
few of the popular and widely-sup-
ported microcontrollers and devel-
opment boards in use today by

Digital Object Identifier 10.1109/MPOT.2017.2733341
Date of publication: 8 March 2018

XXXXXXXXXX

		 IEEE POTENTIALS	 January/February 2018	 ■	 3

makers, students, and hobbyists.
Microcontrollers pack a lot of func-
tionality on a single chip, but for
bigger or faster tasks, one may have
to turn to FPGAs. When FPGAs are
mentioned, engineers often begin to
sweat a little. For many, FPGAs
bring back memories of digital
design and painful lines of hard-
ware description language (HDL).
Modern design tools have changed
this and allow anyone needing the
f lexibil ity and performance of
FPGAs while avoiding the difficul-
ties of HDL programming.

So what is a soft-core processor?
A soft-core processor is a program
prewritten in HDL that provides
a processing core that runs on an
FPGA. It allows the programmer to
define peripherals such as general
purpose input/output lines (GPIOs),
serial parallel interfaces (SPIs), and
universal asynchronous receiver/
transmitters (UARTs) at compile-
time so he or she can design a power-
ful embedded system uniquely cus-
tomized to his or her requirements.
Need a system with 40 pulse-width
modulated (PWM) outputs, a 16-b-
wide parallel output port, and 12
serial ports? No problem. With the
design tools available today, one can
design an embedded system with a
soft-core processor without writing a
single line of HDL.

FPGA design tools such as Xilinx
Vivado define the soft-core proces-
sor using graphical drag-and-drop
operations. Then the C++ program
that runs on the soft-core processor
is compiled using a different design
tool such as the Xilinx software
development kit (SDK). On power-
up, the hardware design is loaded
onto the FPGA to create the soft-
core processor and any additionally
defined peripherals. Then the C++
program is loaded onto that soft-
core processor, and finally the pro-
gram executes.

FPGAs have development boards
just as do many microprocessors.
These development boards are great
places to start designing embed-
ded systems that use a soft-core
processor. A relatively new develop-
ment board for the Artix 7 FPGA is

the ARTY by Digilent. What makes
the ARTY particularly interesting is
that it was designed with the Micro-
blaze soft-core processor in mind.
The ARTY reference page provides
several getting-started examples
using the Microblaze. The ARTY
sports 256 MB of external RAM,
external Flash for storing both the
FPGA binary definition file and the
C program that it runs, and a USB
UART port to program the device.
In terms of input/output (I/O), the
ARTY boasts the familiar Arduino
Uno footprint and an assortment of
peripheral modular (PMOD) connec-
tors; switches; push buttons; and
red, green, and blue light-emitting
diodes.

Advantages
In the Vivado design environment,
digital logic is defined using a block
diagram rather than writing tradi-
tional HDL code. That’s right, no
HDL is needed. Those who have
used LabVIEW will see some simi-
larities with using the Vivado block
design tool. Adding a soft-core
processor, such as the Microblaze,
becomes as easy as dragging and
dropping from a toolbox, and its
peripherals are defined using a
setup wizard. Wiring blocks are
done by simply clicking and drag-
ging. Vivado even automatically
makes the basic connections to

implement bare-bones microcon-
troller functionality.

If a project calls for both a mi-
crocontroller and FPGA, a soft-core
processor can decrease the overall
printed circuit board (PCB) foot-
print, speed development time, and
permit more flexible redesigns by
implementing both on a single chip.
A soft-core processor allows the user
to customize the functionality of the
microcontroller. Setup wizards let
the programmer choose any combi-
nation of I/O, microprocessor and
SPI clock speeds, amounts of RAM,
and, in some cases, interfacing log-
ic levels. If a project calls for more
computing power, more cores can
be added, all operating simultane-
ously, while the FPGA supplies the
glue logic needed to connect them to
outboard peripherals.

From a data acquisitions appli-
cations standpoint, the Microblaze
and other soft-core processors offer
the advantage of deterministic tim-
ing, unlike application processors
such as the Rasperry Pi that typi-
cally run Linux as an application-
scheduling operating system. This
lets one precisely control when data
is being read from a pin without
any jitter, since the FPGA nature
of the device lets one rewrite inter-
rupt routines to become truly inde-
pendent parallel routines that are
handled simultaneously. Develop-

(a) (b)

FIG1 (a) The part of a block design implementing a Microblaze soft-core processor.
This shows the ease in implementing a soft-core processor using powerful design tools
such as Viviado, which turns soft-core microprocessor design into a drag-and-drop op-
eration. (b) Part of a program designed to run on this Microblaze that configures its GPIO
and SPI interfaces at run-time. Programs are written in C++, a language familiar to most
engineers.

past spring term, the author and

4	 ■	 January/February 2018	 IEEE POTENTIALS

ment boards such as the ARTY also
provide prodigious amounts of RAM
(256 MB of DDL3!), significantly
more than most microcontroller de-
velopment boards and provide simple
block-design methods to interface
them to the soft-core microcontroller.

The cons
Development environments range
from lightweight and sleek to bulky
and complicated. The popular devel-
opment environment used with the
ARTY for developing a Microblaze
soft-core-processor-based system is
Vivado, and it is definitely of the
800-lb-gorilla variety. Open Vivado
and prepare to be blinded by win-

dows, sidebars and menus. And
Vivado is not the only design envi-
ronment needed; the C code that
runs on the Microblaze is developed
on the Xilinx SDK. For those who
enjoy the simplicity of the Arduino
integrated development environ-
ment, Vivado is a totally different
beast.

Moving from the prototype phase
to a product with an FPGA is also
much more complicated than when
using microcontrollers. Prototypes
using hardware microcontrollers
can often be made using through-
hole versions, or relatively simple
small outline integrated circuit dual
inline package adapters that can be
hand soldered. Not so with FPGAs,
which have much higher pin counts
and pin densities precluding hand-

assembly, and which often come in
packages such as ball grid arrays
that require specialized equipment
to wave-solder. FPGAs also require
external support circuitry, such as
electrically erasable programmable
read-only memory, to store the logic
design, code, and random access
memory (RAM) in separate chips. To
produce a PCB with an FPGA and its
circuitry typically requires at least
four layers.

To get started or seek help im-
plementing functions such as the
UART or SPI on the soft-core micro-
controller, one must turn to online
communities and documentation.
The wealth of carefully-documented
functions and examples that ac-
company many hardware microcon-
trollers are simply not present for
FPGA development objects such as
the ARTY, Microblaze, and Vivado.
The supplied application program-
ming interface is helpful but often
lacks reference examples. The get-
ting started page for the ARTY is,
similarly, a great resource but is lit-
tered with “work-in-progress” and
“fix-me” tags suggesting what is
written in those sections may not be
true. As soft-core microcontrollers
rise in popularity, this situation will
continue to improve, but compared
with the civilized world of microcon-
trollers, FPGA design definitely has a
Wild West feeling.

Real-world application
At the Virginia Military Institute,
Dr. James Squire offers a course in
electro-mechanical design. In this
course, senior electrical and com-
puter engineering students are
given a real-world engineering con-
sulting project and must interact
with an off-campus client to build a
device that solves a problem. This

students were asked to design a sys-
tem to measure the impedance of
cells as they grow in a culture well
to be used in chemotherapeutic
cancer research. It involved creating
a front-end graphical user interface

TABLE 1. XXXX

MICROBLAZE ON ARTY ARDUINO UNO REV 3 RASPBERRY PI 3

Processor Speed 100 MHz 16 MHz 1.2 GHz

RAM 256 MB DDR3L 2K SRAM 1 GB LPDDR2

Operating System No No Yes

A comparison of a few of the capabilities of the most popular hardware microcontroller development boards
with that of the ARTY, a development board for the Artix 7 FPGA. The Raspberry Pi has a higher clock speed and
more RAM than either the Arduino or ARTY, but it requires an operating system to run more than one thread,
which may not permit timing-critical applications, such as data acquisition, that are intolerant of jitter.

FIG2 The Wild West of FPGA design: A scope screenshot taken while debugging SPI
communications errors. The blue channel should be a square wave showing data being
sent from an external ADC to the MISO pin on the ARTY. The spikes on the channel sug-
gest that the reference documentation for the software-designed SPI port have reversed
the MOSI and MISO pin names, so the FPGA is attempting to (feebly) push data out on
its input line. We assume reference documentation to be correct, but this scope capture
shows that is not always the case.

was capable of up to 400 ksps, al-

		 IEEE POTENTIALS	 January/February 2018	 ■	 5

(GUI) running on a PC written in C#
that communicated to a real-time
phase-locked differential amplifier
run by a microcontroller. The ana-
log subsystem design and PC/
microcontroller interface turned out
to be relatively simple; the logic sub-
system that permitted analog to
digital (A/D) acquisition of 18 b of
data at a rate of 400,000 samples/s
for up to 10 s at a time turned out to
be significantly more complicated.

We completed the contract in
three phases. The first phase simpli-
fied the engineering requirements
to allow data of 8-b precision to be
taken at 100 samples/s for 1 s. This
speed enabled the use of a common
microcontroller development board,
the Teensy by PRJC. The Teensy
hosts a 16-b microcontroller with
more than enough RAM to hold the
data collected at this slow speed, an
integrated A/D unit, and onboard
USB to allow the upload of collected
data. When this was successfully
built and tested, the project entered
the second phase in which an ex-
ternal A/D converter was interfaced
to increase the signal acquisition
precision to 18 b. The A/D chosen

though at this phase, we remained
at 100 samples/s. The Teensy re-
mained to control the A/D, store
the A/D data, and communicate
with the PC to upload the data.

The final phase was by far the
most challenging: to increase sam-
pling speed by over three orders of
magnitude to 400 ksps. The A/D was
emitting data using a serial inter-
face; 18 b at 400 ksps requires very
tight timing, especially since over
half of the time the A/D converter
was performing the conversion and
therefore unable to communicate.
This speed required a microcon-
troller with a very fast clock.

Further, we wanted to embed a
sampling timer on the microcon-
troller to trigger the start of each
A/D conversion, but the fastest mi-
crocontrollers we could find ran
Linux or another scheduling operat-
ing system, making it impossible to
obtain clock-pulse-accurate jitter-

less A/D triggering. Another chal-
lenge was the raw amount of data:
18 b of data at 400 ksps over a 10-s
experiment generates over 10 MB of
data, requiring external RAM.

The solution came with the ARTY
development board. The ARTY uses
an Artix 7 FPGA and 256 MB of
RAM, all on an easy-to-prototype
development board. We used the
Teensy microcontroller for all non-
time-critical management func-
tions including using its USB port
to upload the sampled data to the
PC. The ARTY was used in the time-
critical loop to trigger the A/D con-
versions, serially clock the data out
of the A/D, and store it in its DDL3
RAM. Then it provided the data to
the Teensy in chunks using a sim-
ple handshaking protocol for the
Teensy to send back to the PC for
analysis and display.

The team’s initial plan was not to
use a soft-core microcontroller but
rather to design a state machine in
the FPGA to trigger the A/D convert-
er, clock out the conversion serially,
and store the conversion in succes-
sive RAM locations, since these are
simple, repetitive operations. This
was more complex than we antici-
pated. Unlike the detailed documen-
tation, tutorials, and example code
available for many popular micro-
controllers, it quickly became appar-

ent that FPGA programmers form a
smaller community, and, therefore,
FPGA documentation is less-exten-
sive. Vivado is not intuitive to use.

The first problem we attempted to
solve in building the state machine
was accessing the onboard DDR4
RAM, and after countless hours
searching and experimenting, we
were still dead in the water. Look-
ing through the ARTY tutorial page,
we came across a section that men-
tioned the soft-core microcontroller
named Microblaze in a “hello world”
tutorial. This simple program gave
the basic reference design for the
softcore microcontroller, which ulti-
mately laid the foundation to solve
all the problems we encountered. It
allowed us to change the approach
of the team from being HDL coders
to being traditional C++ coders, a
language we had considerably more
experience using. The tutorial also
showed how to set up the RAM IP
Block with the Microblaze, which
solved the problem of memory inter-
facing. Further optimization could
allow the Microblaze to communi-
cate through the ARTY’s USB port to
the PC, eliminating the Teensy hard-
ware microcontroller entirely.

Murphy’s law strikes
Blazing down the highway at 70
mi/h, we headed to Massachusetts

FIG3 The final product delivered to the client’s biomedical lab. The product housing is
removed to reveal the analog circuitry populated on a custom PCB that is controlled by
the ARTY (circled in red). The laptop is running a GUI written in C# to control various
data acquisition parameters and analyze and display the collected data.

6	 ■	 January/February 2018	 IEEE POTENTIALS

to deliver the product to Dr. Antho-
ny English’s lab at Western New

England University. I
 sat in the back seat with a

laptop, using the 10-h ride to clarify
comments in the code and add ref-
erence documentation, both of
which seemed trivial enough to
leave for the car ride. Halfway there,
I double-checked to make sure the
newly-commented code would syn-
thesize (FPGA-speak for compile)
correctly, and I was alarmed to find
it generating a ton of errors. After
some digging, I realized the Vivado
package had determined that the
car ride over would be a good time
to update its core libraries to a new,
not fully compatible, version. With a
couple of hours left I located the
troublesome libraries and began
patching the code. As we pulled into
the parking lot, I frantically typed
my last lines of code and made sure
everything verified. It was a little
closer than I would have liked to
end the semester-long project, but it
worked well and Dr. English is cur-
rently using it to obtain data.

If you need flexibility and per-
formance in your next embedded

PC C# Program to
Teensy:

– Sample Time
– Collect Data

ARTY to ADC:

– Start Conversion
– Collect Data (SPI)

– Collection Complete
ARTY to Teensy:

– Send Back Collection

Teensy to ARTY:

Arty to Teensy:

– Send Collection (UART)

Teensy to PC C#
Program:

– Send Collection (USB)

Teensy to ARTY:

– Sample Time
– Start Collection

FIG5 After a hair-raising debugging ride to his laboratory, we present our client with the
final product and demonstrate that it meets his requirements.

		 IEEE POTENTIALS	 January/February 2018	 ■	 7

project, consider a soft-core proces-
sor. The ARTY provides an excellent
introduction—purchase one, read
the reference page on the Digilent
website, complete a few of their tu-
torials, and get started on your own
design.

About the authors
Dominic Romeo (dromeo116@aol
.com) earned his B.S degree in elec-
trical and computer engineering
from the Virginia Military Institute
in 2016. Upon graduation, he began
working with Lockheed Martin—
Rotary and Mission Systems in
Manassas, Virgina. He currently
works as software engineer and is
part of the Engineer Leadership
Development Program.

Joseph LaMagna (lamagnaj16@
mail.vmi.edu) graduated from the
Electrical and Computer Engineer-
ing Department at the Virginia Mili-
tary Institute in 2016. Upon gradua-
tion, he was commissioned as an
officer in the U.S. Army. He is cur-

rently stationed at Fort Rucker,
Alabama, where he is training to
become a helicopter pilot for the
Army.

Ian Hogan (ianhogan93@yahoo
.com) earned his B.S. degree from the
Department of Electrical and Com-
puter Engineering at the Virginia
Military Institute. He currently works
for the Department of the Air Force,
supporting the TACP-M Program
Office at Hanscom Air Force Base.

James Squire (squirejc@vmi
.edu) is a professor of electrical engi-
neering at the Virginia Military
Institute. He earned his B.S. degree
from the U.S. Military Academy and
his Ph.D. degree from the Massa-
chusetts Institute of Technology. He
was awarded a Bronze Star in the
Army in Desert Storm and was
selected as Virginia’s Rising Star
professor in 2004. He is a licensed
Professional Engineer and main-
tains an active consulting practice.

�

